
k AD—A067 892 ARIZONA UNIV TUCSON DEPT OF CHEMISTRY FIG 9/2 ‘IADVANCED SOFTWARE CONCEPTS FOR EMPLOYING MICROCOMPUTERS IN THE ——E T C(U)
APR 79 S B TILDEN, M B DENTON 10014—75—C—0513

UNCLASSIFIED TR—l8 ML

END

6 -79
0OC

I

L a

-

-

1EVEt~<~~~OFFICE OF NAVAL RESEARC H
Contract N00014-75—C-0513

Task No. HR 051-549
Technical Report No. 18

ADVANCED SOFfl4ARE CONCEPTS FOR EMPLOY iNG

MICROCOMPUTERS IN THE LABORATOR Y

Scott B. Tilden and M. Bonner Denton

icl c-)(Department of Chemistry
U_I University of Arizona

I ~~ Tucson , Ari zona 85721

Prepared for Publication

in

Journal of Automatic Chemistry

Reproduction in whole or in part is permitted for any purpose
of the United States Government.

Approved for Public Release : Distribution Unlimi ted

79 04 20 032
T TTT~1I~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~ ..

SECURITY C L A S S I F I C A T I O N OF THIS PAGE (Ifl.•n Data Ent.,.d)

b~~ D1~~DT I I A a ek IYAr l n u ~~~~~~ READ INSTRUCTIONS
“1-U !.J~~~I w’i~~.um~~ i~ I ~~ I RJ I ’ I BEFORE COMPLETING FORM

I. REPORT NUM9ER 2. GOVT ACCESSION HO. 3. R E C I P I E N T S CATALOG NUMBER

1 ’ 7
~~~J8/ 

V

4. T ITLE (and Subttti. ) 
___________ 

I. TV PP OF REPORT 9 PERIOD COVEREO

~~~~~~~~ 
“ CE F A R FICEPTS FOR I~ 1PLO YIN G J

~~)~~1TERIM ~~~~~ ~~~ I
MICROCOMPUTERS IU THE LABORATORY , r~~~

I

—
7. AUTHOR(.) I. CONTRACT OR GRANT NUMSER(.)

~ ~
/ B ./ T i lden ~~~d~ M. Bonner/Denton ,

~~~~~~~~ ~~l4-75-C~~5l3 r~
9. PERFORMING ORGANIZ AT ION NAME AND ADDRESS —~~ 10. PROGRAM ELEMENT. PROJECT . TASK

AREA I WORK UNIT NUMBERS
Department of Chemi stry ~/ ., 

~~University of Ari zona 
~~~~~~~~~~ 

NR 051-549
Tucson , AZ 85721 _____________________________

~~~. CONTROLLING OFFICE NAME AND ADDRESS jJ~~~~x.panI nAi~I-_—.__

Offi ce of Naval Research / Ij, ~/ Apr~~~~~~ 79
Arlington , Virginia 22217 4 13. NUMBE ROF PAGES

14. MONITORING AGENCY NAME 6 AODRESS(S I dI l l  .r.n l from Controlling Olfic.) IS. SECURITY CLASS. (of tht• t.p. ,t)

UNCLASSI FlED
ISa. DECLASSI FICATION/DOWNO RADING

SCHEDULE

16. D ISTRIBUTION STATEMENT (of IhS. R.porl)

Approved for Public Release; Distribution Unlimi ted

17. DISTRIBUTION STATEMENT (of ffi . ab.tradt ~~~~~~ Sn Block 20. ii dlfl. r.ni ~~~~ R•porl)

14. S UPPLEMENTARY NOTES

19. KEY WORDS (Continua on r.v.ra. .td. If n.c.. .a.y and Id.ntlly by block nimeb.r)

COFIVERS
In terpreti ve Compiler
Comp uter Lan gua ge

2�~~IheST RACT (C.nll nu. an r.vara• aid. SI n.c.aaary and id.nSSty by block nua,b.r)

Current trends in the computerization of specialized custom cnemical instru-
mentation indicate the increasing utilization of dedicated microprocessors .
Conventional software techniques often possess serious limitations in regard
to initial development effort, execution speed, flexibility , and/or hardware
requi red. A high-levet~”interpreti ve compiler” software package CONVERS is
described which offers numerous advantages compared to conventional approach~including high speed operation, high level I/O , language flexibility, super-
ior memory efficiency and a variety of other dec~ir~h1p rh rir oric~tir~

DD ~~~~~~~~ 1473 £OIT I0N OF I NOV SS IS OB$OI. .ETE 

~73 ,3~ ~~~



ADVANCED SOFTWARE CONCEPTS FOR EMPLOYING

MIC ROCOMPUTERS IN THE LABORATORY

Scott B. Tilden and M. Bonner Denton

Department of Chemistry
University of Arizona
Tucson, Arizona 85721

— . 
, t~ ~ectI o fl

~ 
.~~ Sg~tioP £3

. J .-~.:~M;~D £3
,.,

79 ~~ ‘ .0  ~32



_ _ _  

~~~~~~~~J : .  
~~~

- - ----

~~

ABSTRACT

Current trends in the computerizati on of specialized custom chemi-

cal instrumentati on indicate the increasing utilization of dedicated

microprocessors. Conventi onal software techn iq ues often possess serious

L limitations in regard to initial development effort, execution speed ,

flexibility , and/or hardware required. A hi gh-leve l “interpretive coin-

piler ” software package CONVERS is described which offers numerous

advantages compared to conventional approaches including high speed

H operation , high leve l I/O , language flexibility , superior memory effi-

ciency and a variety of other desirable characteristics .



_ _ _ _ _  _ _-  
.

Advanced Software Concepts for Emp loying
Microcomputers in the Laboratory

by

Scott B. Tilden and M. Bonner Denton
Department of Chemistry

University of Arizona
Tucson , Arizona 85721

While a proliferation of commercial chemi cal instrumentation is

appearing today employing microprocessors for a variety of control and

data reduction applications , the great potential of microprocessors has

not been exploited extensively for individual custom applications . The

prima ry reason for this phenomenon is altogether too clear——microproces-

sor software is either difficult to develop or inefficient in memory

requirements and speed . This problem is even more important in situa-

tions requiring constant software modification. Initially, most instru-

ment manufacturers utilized cross assemblers supported on large “number

cruncher ” computers to generate the required machine code bi nary program.

More recently, the trend has been toward the use of a “developmental

system” (at a cost comparable to a moderate minicomputer——the authors

use the terni “mini” in contrast to “mi cro” reluctantly because of the

eve r increasing overlap in computing capability ) to write and debug

assembly level progra m s which are subsequently tonverted to binary and

incorporated into an instrument in the form of “read only memory” (ROM).

— — — — - 
___

.
~~~

. . ..
~.‘~- & a) st.fl ~~~~I*. . 1_.j ~~~

_

_ _ _ _ _ .~~~- - - .

-2—

While this approach has proven cost effective for high volume mass pro-

duced applications , it possesses serious limitations for system updates

and custom applications . Addit ionally, the ability to program effi-

ciently at the assembly level is a talent requiring a significant expen-

diture of time to develop.

During the past several years , a virtual del uge of sophisticated ,

flexibl e , high performance computer hardware has been introduced primarily

aimed at a rapidly growing “hobbyist” market. tianufacturers quickly

realized that to sell the public hardware, some form of reasonabl y high

level software must be made availa ble. A variety of BASIC interpreters ,

ranging from rather “dumb” to “quite intelligent” have since evolved.

The more intelligent BASIC interpreters have several highly attractive

attributes for “hobbyist ” applications . The language is both easy to

master ari d conversational . Erro r and caution messages are provided as

aids during programming.

Why not apply the “hobbyist” technology toward the implementation

of custom laboratory systems? Many investigators have and , no doubt ,

many more wi l l take this approach. However , BASIC interpreters possess

serious limi tations in terms of system speed , flexibil i ty , and

input/output (I/O) capabilities. In BASIC , each conHuand must fi rst be

interpreted and then executed (see Figure 1). In many cases, the inter—

pretatio n process takes much more time than the actual execution . This

problem is compounded by t he fact that connnands interpreted in the past

must be re-interpreted each time they are used causing iterative pro-

grams to he very slo~r. While speed Is often not a serious limitation

J

.

—3—

in playing computer games , laborato ry applications requiring high speed

data acquisition and/or data manipulation are common . Additionally,

the more intelligent BASICs make very inefficient use of memory often

requiring a minimum of 12 or 16 K bytes (twelve or sixteen thousand

eight bit words).

In contrast to interpreters , high level compilers , such as FORT RAN,

offer a much faster “run time” execution speed. This is accomplished

through generation of the required machine code during a series of pro—

gramming operations. Compilers using FORTRAN , which are designed to

run on many minicomputers and some micros , often fi rst transform user

symbolic source code into assembly code . An assembler program , sub-

sequently, transforms this into the required machine code . This ready—

to—run machine code is often loaded along wi th a run time package which

executes in the manner shown in Figure 2. While this approach greatly

improves execution speed , the need for loading several different soft-

ware routines increases the “hassle” associated with editing and debugg ing.

Thus , this makes some form of mass memory . such as a disk or magnetic tape .

almos t mandatory . Additionally, I/O algorithms generally must be im-

plemented in assembly level code!

One obvious question immediatel y arises-—why not inco rporate the

most desirable characterist ics of both interpreters and compilers into

a single language? Additionally, due to the unique requirements found

in many applicati ons , why not allow the progranuner additional flexibilit y

by providing him with the abili ty to actually develop his own individual

modifications and additions to the language itself? Other desirable

. ~~~~~~~~~~ .

-~~ ,. .

!II~

-4-

features would include high memory efficiency , high level I/O programing,

ease of understanding the language ’s “ inter—workings ” and the ability

to be transferred from one CPU to another with minimum effort.

During the past two years , a different approach to software has

been taking place at the University of Arizona referred to as an “Inter—

pretive Compiler ” called CONVERS . This package , which is conceptually

similar to the FORTh language currently being used in several minicom-

pute r-astronomical applications (1), is able to provide many of the

desirable features found in both interpreters and compilers by separating

the com pile ami d execute states (as a compiler does) while maintaining a

resident user interactive and conver:ation executive which oversees sys-

tem operation . The ability to realize such advanced software capabili—

ties in a very modest amount of memory (less than 4 K bytes on an 8080

based micro) is the direct resul t of exploiting threaded code programming

techniques (see Figure 3). The approach involves highly efficient use

of simple nma croinst ructions to build more complex subroutines which are

recombined with additional macroins tructions to form super subroutines .

This process of combining previously defined modules to form ever in-

creasing ly sophisticated routines for performing the task at hand is

the essence of threaded code programm ing. When initially loaded and

running , CONVERS acts much like an interpre ter, i.e. it is conversational ,

ready to either execute a previousl y programmed al gorithm or accept a

new one. However , in contrast to BASIC , when a new program is being

entered under CONVERS , it is immediately transformed into binary machine

code or to the binary starting addresses of other previously entered

— -. - ...—---- .~.--- --—-—.-~- - — . - — -- - ------ -

—5-

and compiled machine code programs. During this process , the operator

is kept informed of the status of tile program by a series of error and

diagnostic messages. When the new program has been completed , it is

entered in a programn libra ry or dictionary ,whlch is constant lybui lding m.p from 1c~,mmry

(see Figure 4). If the opera tor now wants to execute this program , he

can request it from his terminal . A dictionary search will begin at

the last entry and progress unti l the requested program is located .

Once located , the requested program will run in its entirety wi thout

need for any additional dictionary searches. For example , let us assume

an algorithm , called ACQUIRE , has been programmed to take data from some

hypothetical experimental system. When ACQUIRE is requested from the

terminal , a dictionary search is initiated . The program named ACQUIRE

(see Figure 5) , once located , contains the starting addresses of a series

of previously de1ned modules which implem ent the various steps necessary

to perform the desired experiment . For example , the module SCAN which

might be intended to scan a monochromator ’ s wavelength in some desired

manner has been previously defined and tested . This abil i ty to easily

test each modu le separately and then eff iciently combine a series of

modules to perform a mo re complex function , test this function,

and then employ it in a vastly more complex function , etc., i.e. test-

ing each step as the threaded code is made increasingly complex , is a

major fa c tor cont ri huting to the speed with whi cli software can he developed

using COlIVERS . Use of a software stack also contributes toward improved

memory efficiency and simplified programming.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_

ii~~~
_ 
-

-6-

The stack is an area of memory set aside to handle parameters ,

data num bers , etc. One of the primary advantages of the stack is that

entries can leave temporary parameters on the stack without having to

assign specific memimory locations to store them . This not only can save

considerable memory , but also allows programs to be easily relocatable

since one algorithmn need only know that a previous routine left so many

words of data , etc. on the stack. It need now know where the previous

routine is nor even where the stack is located. A series of stack

handling routines , which should appear quite familiar to many small

calculator users , provide an array of capabilities , including the

ability to “PUSH” a number on the stack , “POP” it off, duplicate it ,

“SWAP” the top two numbers , locate a number some distance into the stack ,

and copy it on to p of the stack , etc. Additionally, a variety of logic

functions famil iar to the minicomputer user are provided including OR ,

AND, shi f t  le f t , shift right , greater than , less than , etc., etc .

Input /output ( I/ O ) is normally accomplished using the stack in

conjunction with the “ IN DEVICE ” or “OUTOEVICE ” commands . For example ,

to take data from a device located at I/O , port 7 , the number seven is

“pushed” onto the stack and III DEVICE is called. INDEVICE “pops ” the

top number from the stack (“7”), goes to this I/O port , takes in a nuni—

ber and “pushes ” the number on the stack. OUTOEVICE functions in a

siiniliar manner, requiring the number to be sent to the desired device

to be “pushed” onto the stack followed by the device ’ s I/O port address.

Hence , to send the nuniber 131 to device 11 , the number 131 is pushed on

the stack followed by 11 and than OUTDEVICE . This “pops ” the top nt’~iber



r ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

‘

~~~~~~

—

~~~~~

- ------ -

~~~

—

~~~
--

~~~~~~~~
-

~

-— .

(11) from the stack , uses it as the output port and then sends the num-

ber 131 to that location .

To appreciate the ease with which real programs can be written , a

few examp les wil l be considered. A trivial program , called SOUND, whi ch

rings the tei irinal bell three times , might be written

SOUND BELL BELL BELL

The colon denotes changing from EXEC UTE to COMPILE mode . After typing

the name of the new routine, in this case to be called ~SOUND
,,. typing the name of

the earlier defi ned routine (‘BELL ’ — a p revi ousl y defined simp le pro-

gram to ring the ternii’ial bell) initiates a d i ct i onary search to locate

this routine ’s starting address which subsequenti ally is entered three

ti mes. The resulting ‘SOU N D’ routine contains machine code calls to

the ‘BELL ’ routine which, i tse l f , is composed of machine code. Of

course , ‘SO IJIID’ ~- ‘u ld a lso have been de f ined us ing a DO —LOOP , i .e.

SO UN D 3 1 DO BELL LOOP

iihere the numbers three and one set the upper and lower in d ices. If i t

were des i rab le to change t he actual number of bell r in gs from some other

p rogram , this value could be defined as a VA RIABLE —— let ’ s cal l i t NOISE.

3 VARIABLE NOISE

In this case , the number three is fi rst pushed on the stack , VARI ABLE

transfers the top number on the stack (the three) to a dictionary lo—

cat ion named NOISE. If SOUND we re now defined as :

SOUND NOISE @ 1 DO BELL LOOP ;

the bell would again ring three times. In this case , when the word

t

—-w-.

~

~~~~~~~~~~~~~~~~~~~ - , ~--~~~~~~ 
- -- 

~~~~~~~~~~~~~~~~~~~~~


- --—-.— ~~~ 1~~~~~— ----
—~—- —~~~~

_
~~~~~~~~~~

_
4~~~

__.__-._. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-8-

N OISE is  encoun tered , i t s  address is pushed on the stack , the @ is a

simple program which goes to the address indicated on the top of the

stack (that of NOISE) and replaces it with the actual value located at

that address (the number three). At any future time , the va lue  of a

VARIABLE can be changed by “pushing ” the new value onto the stack , fol—

l owed by the address of the variable to be changed , gem erated by its

name and an exclamation mark. To change NOISE to 5,

5 NOISE

a miumu ber five is pushed onto the stack , NOISE pushes its addres3 on the

stack , and ! goes to the address ind ica te d by the “top” number on the

stack and deposits the next number. Now sound would ring the terminal

bell five times.

A much less trivial program which could be written to scan and take

data from a mnonochrom nator equipped w ith a DEUCO SI12A stepper moto r con-

troller (1) (the S~12A takes a parallel number as an address , sends one

of two stepper mo tor s to th i s  locat i cn and ou tp uts an arr i va l  f l a g when

the address is reached) is given in Figure 6. Assume that the experi-

men tal sys tem i s conf ig ured so the SII2A is a t I /O , port 5 and an analog

to di gital converter to acquire data is at I/O , port 7. Let us assume

that , initially, a scan is designed from a starting stepper motor lo-

cation of 2000 to a final location of 5000, taking data every 20 steps.

Wh i le the code ni gh t loo k a l i t t l e  stran ge at f i r s t , i t  q u ick ly

becomes very easy to work with. The SCAN program of Figure 6 could

be combined w ith other modules as show n in Figure 5 to perform some

mo re comp lex experi mental function. Each module of the program can be

~~~~~~~~ - - ~~~~~~~~~~~~~~~~ - a-. -


- ________

-
~

--—.- .—— —--— -
~
-
~~

-- ---
~

..
_____ -

. -

-
—

— 9—

easily tried out to ensure that it is operational before proceeding

with the next.

Presently, CONVERS is being used in the authors ’ l aboratori es for

a variety of spectrochemnical investigations , including laser excited

optoacoustic spectroscopy (Figure 7) and inductively coupled plasma

optical emission spectroscopy (Figure 8). Rather complex interacti ve

control and data acquisition programs have been easily iniplemnented.

flemiiory requirements and operat ing speed have been found to be far superior

to conventional approaches. Additiona lly, new system users have en-

countered almost no diff iculty in utilizing previous ly developed software

even when documentat ion was vague .

The authors hope that this short introduction to only a few of

the concepts emuployed in CO NVERS w ill generate interest in its capabi-

lit ies. A much more complete discussion is available in the form of a

user ’s manual (3) available from the authors .

The development of the CO NVE RS system was par t ia l ly supported by

the Of f i ce of Naval Research and a A l f red P. Sloan Foundatiom i Resea rch

Fellowsh ip to M . Bonner Denton .

(1) C. Moore . Astron. Ast rophys . Suppl. , 15 (1974) 497.

(2) M. B. Deriton , ,J. 0. Mac k, M . W. Routh and 0. B. Sw] rtz , American

Laboratory . B, 69 (1976) .

(3) iONV UI~S: AN INt E RPR ET IVE COMPILER , developed by Scott B. T i ld e n and
M . Oonnc’ r lienton , Department of Chemist ry, Univers ity of Arizona ,
Tucson . Ar i7ona 85721

t
- . - _

r~
— - V-- -

•

- _I Interpretative
Machine Code Source Code File

• I ‘S
~~~~—. ‘

-—.. -
~~

— — — — —
I - ~~~~~~~~~~~~~~~~~~~~~~~~ A

Machine Code ‘S — — — — —
to Execu te  ‘S B

Cor ~i~mand /1 ‘S — — — — — —
___________________ 

.% C
‘S — —  —

_j1 M achine  Code 0 Variou s
to Execute — — — — ‘commands ’Com.H manu b E ma ki ng up

— 

F users source
Mach ine Code 

— — — program.i1 to Exec~iteCommand C 
— 

G 
—

IL

etc.

Fiqur ~ 1: The inte rpretat ive cyc le of common types of languages

such ds BASIC. After examining each command in the source f ile , the

interpreter seam ’ches for and branches to the corresponding block of
machine code ; thus , program execution always remains within the in—

terpreV’



-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

—--. -—~w
•-- -_- -. —----- —

~~~~~~
•
~~~~~~~~~

•---‘
~
--‘ — - .

~~~~ 
.--

~~

-. 

~

‘1

Users  Source —

• File
— — — — — / The Compi ler

Command A 
— 

-— — — — 
, 

,~~ ,~ 
—--—— .- -—.— — •— _____ _____

,Cor;u’iand C, , / etc.
/ /

— ,

Command C / 
— I

— — — — — ‘ 

/ 

~~~~chine Code
Com;riand 0 to Execute

etc. Comn m~ma nd A
• etc.

M a c h i n e Code
to Execute

• Command U

f !ac li ine Code
to Execute

Command C

Machine Code
I to Execute
1 Con?and 0

etc .

—

• Fl gure 2: Note that the conip i icr transforms each source “con~nand”

into ex cc ut at ,Je nm aclm j ne code . This code wi l l , subsequently, be l oaded

and executed independent ly of the compiler.

• -~~~

_ _ _ _ _ _ _ -
~~~~~~~ — 

___________________________-- —

.
~~ B

//~~~~~ • •
~

// 
.

-..
‘• 

• 

~~~~~ 4_.~:T~~~~~D

I’
etc.

Fi gure 3. The ‘thre aded’ code a~proac h used in CO FIVERS . Note that

the 1o, of log ic threads its way in a very non-linear

fashio n.

I

Stack Upper Memory Bound

• I f

User ’s Application

• Dicti onaries
4. 5k Octal

CONVERS -Di sk
Operating System

3.7k Octal
Standard Hi gh

Level Dictionary
1.2k Octal

Initial Machine
Code Dictionary

~~ Octal

Fi gure 4. Memory map of the CONVERS dictionary .

_ _ • • - • • •~~~~~~~~~~~~ • ~~~~~~~~~~~~~~ •

~~.~—Type “ACQUIRE ” —

~~~~ 

_ _ _ _ _ _ _  
# of characters

F 0R M AT~T ______________________

- CALC%T

_____________ 
DISPLAY

____________ RETURN

• (
EXEC~T7VE 

-

.

Figure 5. If a previously defined program nanie (ACQUIRE) is

entered when in EXECUTE mode , a dictionary search

takes place locating the ACQU I RE entry . Once found ,

th i s entry contains all the requi red machine code

and/or calls to addresses of other previously co;npiled
• machine code modules to completely execute the desired

function.

_ _ _ _ _ _



r —=- I- 
— ~~~~~~~~~~~~~ “Pr- —

~ 
-
~ 

-
~~ 

—‘-- -
~~~

-

r
‘4,

~ 82 — 2 ~ . ~~~~
._ ..~ ~~ . 0

41 0 4 , i S . 4 ’~~~~3 ‘0 . 3’ ~~ .4

•~ ~~~~~~~ ~ c’ ,
3 . 4 3 - c r 0 . 4 t~ d C * ~~~~~ O~~~~~~~~~~~ . — C • , _ .

~~~~
‘

S . ..!~ ~ E 5 .., .:~ •— ,. c •

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
~~ .4

o • C i — — — 0’. .3 • 0 4 1 3 3. ~0 — C 0. 6- C ‘0 U C
• I — r. 3 . 3 4 0 3 41 41 1~~~~ ‘0 O V ~ 0 . 3 ., .

_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

3.

a. ci — c C .  3 0  I ’ .. 4 . 4 . 4  4, * 0. £ I 4’ 4i~~~~ C
~~~~ . 

t ’ ’ f t
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

s. a u — a. i.~’ I. 32 — Ci U 4 (.4 ~0— .0 0. ~ .C 4.’ 44

~. ~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ —

K s~ (I a C ’ V — t i C 0 3 V x t iC 0 4 0 C —
V 0 4.’~~~ t.i 4 3 C K — 4, Ci — CI —

* 4, t Si 0 Ci 4’ ._ 0) 41 (5 ‘0 C I.’ .32 “ Ci ti 3. - C .3

C C 0 3 — — — Ci 3 CI 3. #1 .0 41 4- 4? —

~ ~~~~~~~~~~~~~~~~~~~~~ . 5 ° 5~~a? — 1’ 4.’ (‘0 .4) 0 ••~ (41 4’ V 4? 0 3 4’ ‘ C 41

~~ ~~~~~~ 2 .~~~~~~~~~~~ ‘ ~~,,
4,

~~~~~~~ :0 ‘ . s .~~~~~~~~~~~~ V — ~~~~~~~~C i ’ W  K U K

~~~~~ ‘ — C - C- l- l4J C~~~~~ 
S.~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~ .0

4, 3 0 4 ’ U E. ’ . ~~ — 32 ’.i 3~~~~6 5 4 * 4 1 . 0 4 - 0 < 0 4 . 1 —

*1 ‘0 4, 4 S. C 0 0 ‘— 32 0 cC 0 32 . sJ .52 CI I. ’ i.~ 0 -— ~— I— = a. F.

821 — I . V I. 3- 3. i. :.. C #3 41 Li 4’ I) r’ ‘V 4’ S .4 ‘ -— 0 I. IA In — 0. .3 . 0. .C
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.
V c ,~~~~~ 

~~
. a?

~~ 0 82 0. 0 4’ 8. 4, 0. — (ci 4’ 0 . 0 U 4’ ‘ (3 C~’ 3. V a C 0 0 0 0 a) C 0 0 ~~w E e K  o — u  3 2 3 *  0. C i V  4 , 4 1  5 . 4 0 0 4 i~~~~ S..’ C-~~~~~ Cl 9 C i Q O V O
0 4.4 C ~‘. K C •— .-. CI .0 4, .0 4, 3. 4, .0 41 41 ‘V “I 0 0 32 4’ 4. .4 0 US C US ~~ .0 a) U ~~. 0.
I.. ‘4 — — ‘K 3 •— 4- — — 4, Si 4, .0 32 41 44 4.’ 4, 0 4’ — ‘5- — •~‘ (0 .4 ‘0 4.1 S.. 0 ‘1—

a-
• 515 114 0).D~~f l W C
• . C C  W .0

• 4 J C C L ES -
‘.4

— .,~ W v ,  .~ E.— 4-’ Q.~~~
4.3 W 4-’ .- 9 - O C

> C  0 4-’
C~~C •‘

41 w w  a.’ .C C
.0

‘4’ 
C 0 0 . E  C

..‘0 0 u~~E~~~~ V, 4-’
U’, C C 0 . . 0

(fl X 0 0
0 .~~ a.’ W 0.
4 - ’0  .C 0

0 4-’ 4.) ~~~E .— x cs.’
C W V ~ -~~~
~- C 4-’ W - U
~n4J .~~~~— . -

2 •

g ~~~~~~~~~~~~~~~~~~~~~ 
•

.3 4* .0 C •— ‘U C 4 0 4 1 3 . 5 4  0 3  r n c i . . .  C O  >3 E

• ., ‘0 2~~~~~~~
” ’  

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
U, S.- C aJ &) 0

• ‘0 ~i 4.’ .4) 02 ‘.4 4, CD C U .q 4. 0 C — S K 41 r ‘r- E S...
‘V

~ =
4’ ‘ *4 C 8 .~~~~’ t~~

, , 4 , ‘ = I 1 V 0 0 . 4 C
~~~~~~

4. .4 32’ .0 •fl 0 C C 
- 32 53 4.# ‘4- I. ’ ~~ .2 .~ ~~ C C .C

0 . - I 
)1 .1~~~~~~~~~~~~~~~~~~~~~~~~~ .4 ~~~~~~~~~~~~~~ C • 3’0~~~~~~~~~~~~4, 

~J Q )  ~~~~ fl
o C — 1* 32 I) X 4. 41 •-. 1 .- .1 4 ’ 4) C 41 &1 V = CC 0 • 32 32 ‘0 .6 (0 > 5... 4/’,

~, ;~~~~~a. 4 ’ 2  
~~~~~-.3. . . .- 32’ .l 3 W . 3 4 6 . 4 1 0 W j . 4~~~~~~~~3 C •.— 0 W . ~~

544 4 . ’ 0 . 4~~~~~~~~ 4’ 4. C
4’ 4 , f S4’

U
4’ 4,0 4 ’

4,
.
~~~~~~, g  00 0’  . S . 0

V . -c 0 ‘4’ 3) 41 4, fl • C ‘_I U 32 0 4’ U .. ‘•  41 4 1 4’ I. .3 4 ‘K .,- C 5—. _)t ‘O C
• ‘ -~~~— a ~ 

( 4 ’ 2 1 4 1 ’  I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4-’ C C n a) 0~~U 4-’

3 C C  4. Ci e O~~~~~~~ C) ’4~~~~~~~~~~~~~~~~~~~~~ 4 ~~

0 .-. 0 -- 4’ 4.’ .J Ci 4’ 0) C it 4’ C .4 CM C 0 4’ 3’ 4’ ‘. S — ‘0 54 CI V W in .— E 4-’

~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• .3 4 )  • 5.. — I .  U 0 U’ 4. CL 4’ C. i’~~~ C I. U ..J 8. c cc ci a’ n. •.— a 4/) •p 5.., C (0 .C

~~ . F L 8 . .~ 
~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ C E  a) 4-’

— 4, — C 32) 0 ‘0 .-. 1. 0 4’ C ‘ - ‘ “ t 4 ’. CO .J 4’ Ii C’ — — ft (44 .3 •i • a) (0 .C U)
V C F ci. .-- 4 ’ 3’ C _J 4 24 4’ -‘ 0 C 4 0 I’ 0- .3 —. — — 0 35
4, 0 ‘5 C 0’ I — •.• .3 ? S.’ .4 32 (II ‘_ 0 :: ‘ 0 4’ 0 32 U 0 — Ci 5 0 .0

— U U 4’ 2 “3 3 3’ 2’ CC C —• C.) I . 14.1 + 4’ Ci 8. 3 .32 4’ 4’ 4-’ 0.. L~ 0
~~~~~ ‘ 0 32 — CC I) 4 . 0  c j : . c i’ c ,’ 4~~~~ ) s 32 4, 44~~~ S CS .32 I 5 ?  3 4 ’  4 1 3 5
4 .— ‘4 .3 4.’ - — -5 ~ ‘ ‘3 1 Li 4’ Li 0 II’ 0 6? C 4, .0 4. e U) 0 E W C i~

• 0 C C) .. 41 ’ l K C  ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
S.- QJ •,— . 0 O. . — %-

• 53 .0 4’ C I) SI .5 41 .3 4’ 4) .3 • • ) ‘ C 1 5 5.5 U? 0 e,• 43 4, — •.. ~~~ 4fl E U

~~~~~O C 4 , 0  C C L  I. 4 , . C M C 3 . r .) . r ( - C’ C . U  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
4 — C QJ W Cfl .0

4 1 . 0 1 . 3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
o~~~~~~~~C C) • 4 4 ’ 4 ’ .)

•~,,
4 ’ 0 ’ U C O Q J E E W E

82 4, 0 ‘3 (. • . . ,~ ~ ~ C 4’ ...C 4. 4 . 3 ’ 0 4’ 5 5 . 3 4 ? C•. Cl 54 4, a. C .C .C U (0 (fl ~~
~~~~~~~~~~~~~~~~ ..‘~~~~~~~~~ .‘ ,. r 0 4’ . C’ ”1 0’  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .,~~~~~~~~~~~~~~~~~.? . , . 4 sJ 3 .  ~~~~U4’~~~~~C~~~~~ C

— — 4, 4 ’ ~.‘ 1) 4’ 1: .. - t . I ’ 4 L 4 4. 2 41 ‘ U - C S ’ ’ ‘3 C’ — 4’ 4? C Ii .0
• Cs ‘0 C . % 4 , 3 2 • . 3 0 a - - .~ .-t .1’ 0? 4’ 41 ._ — 3) 3 , 4 ? , (. 4 ,

a ’ .— ,• .- I U .2 1 “ I I ’ — ‘4 = .82 I’ 4.? ... (8 44 .4 0’ ‘0
8. C 44 I’ * CU C i . .) CC)) I’ L ’ ’ S f l ’ ’ . ,r : : .. 4 ’ ” U 4.1 4, 4) t4

• .3 ._ 4, C. 35 .2 V 3’ 4’ 14 • C 0 ’. ’ ’. 4 ’ flI C,) I - CI -, :4 43 4 ci 1 . 1 4’ • f l — . S
• C ’ C C I. C C C. C C. ’ C Ci 1:- 4’ •. i. ,: .4 8 r 0 . 3 2 •’ 0 I ’ 4 . 5 4 ’ 3-~~~ UI
• — 8. — — - — — . 2 L 1 ‘0 .. ‘ b. .~ I’ ‘~‘ C C C) 1~ 6- 4’ “ I ~~~4’ U 4, (41 —

3- 0 4 ’ ‘~ - V .~“ C i (8 4’ CI 4 - t o, CI I’? I. :. — C ‘ 0 0 3 3 5 0 .~~~~~
.3 CI C’ — 0 4 - 3 3 2 4 . 3 ’0 4 . 0 0 3 2 ’ C i 0 1 . .,J C’. 4 1 4 . 3 4 4 , . 1 . 3 2 0 4 ’ a ’ 8 2 4 4 10 0 U

0 8. ~~ -‘ ‘-‘ .3 L~ 0 0. ‘0 ‘0 4.’ C) 15 32 5.’ 41 C 4 : C) S . , 0 4, CC. 0 .13 1 5— U It 4~ .0 4- 8-

-.4

~ d -. c’ .
~

,g,

8- ~4 (.
a. a .6 (4 5-

‘4 0 CI U Li CC
5- 5- 4 ’ 03 .4 . (44

1* In4 32. —
Ia vs ci
C3 — S

44’ ISA (ci 1.1 4’
C.

~~
~ .

g : —
~~~~~~~ 

~~~~

~
3 ~~Y~~~Y’L~� ~1I’TVflb ~~~~~~~~~ S’t !I1Vi SIRS

~~

~~~~~~ F4 ..



r “

~~~~~~

-- ‘ -- ---
~~~~~~

- .~~~~~‘~~?
- 

~4’ 3 •?S# i~ -- - -~~~~~~~~ . .

a., ’.)
• 

•

4/,

‘0
I-)
I—

0
I I8j 1 i1 1

0 / 0
‘4.’ \ / 4 - ’ .
Q. 5—

V (4,
0

~ I ~~ _ _ _

_ _ _ _ _ _ _ _  

_ _ _  
[ 

S..

_ _ _ _ _ _  

I 0

.c n
-

5-
( 0 0  ~~ (1)

U •1’~ 32/)
- J o e ‘U4J ,~.

• 0.1 5-
_ _ _ _ _ _ _  E 0

~ihi
I ~ I

L~~ 
_ L~1

‘K

‘.5,.



-‘I ’

H 

I LJII — :~

RI _ _ _ _ _  
I n C

•

~~~ ~~~-

-~~ -L ~ _
_ _

U
t’~~~ \7~ “~fl .~~~~~ ~~

i’4
— “

,.-

~~ fl ~j . 111U111L !LIfl
~~~~~~~~~~

II 4’ In 0
• S. ~~~~~~~~~~~~ ‘— F• - ‘ 4~~& 4’-

0 5 - 0
. J 1  a) 4.)

U .4.) 

--.---- .-.. ——.—- .
~~~ ~~ in
4.) 0, (0
(0 E
E 0 ’ —

P~~}~
~~~~~~~~~~~~~ 

,

~~~ 

.

~~~ ~~

~~ ~~~~~~~~~~~~~~~~~~~~~ 

. I

‘.5..

_ _ _ _ _ _ _ _  

• •



‘

S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

F~~ ,~’e CaptionS

Figure 7. The optoacoustic experiment in which a micro-
computer is used to control laser wavelength
and to monitor laser power and optoacoustic
signal.

Figure 8. A schematic of the inductively coupled plasma
emission spectrometer in wh ich the microcomputer
is used to control radio frequency power and
‘f lame ’ po sitioning as well as to mon i tor light
intensity .

I

- -

•—

4

-

~
‘0’T ’ ‘ ~~~~~~~~~~~~~~~~~~~

— -•‘ — . — --. -— .,,. , ~~~ “ — .Mt l. (‘ 7~~~~ ’ ..~ Dil, ~~ ~~~~~
‘ -

-a

,1’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
=—--

-

- LI~!II1
I

..

(31r \ Lr~ñ
-

=

~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~E

H
I I I
I l l

U
C) q

T~~~
. L~t1~~~~~

=
~~-.

[Ii}-[
~~1

~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~ ~~~~~~~~~ • - • - ~~~~~~~~~~~~~~~~~~~~~~~~~ _ ,,,, t,., _.... - -



-. - - —I ,..- ~~~~~~~~~~~~~~~~~~~~~~~ 
__c. - - ‘

~~~~~~~ 
--‘ , .— ‘

~~~~
-
~~~~~~~~~

-•,—---—---- -—- • “~~~~~~~ ‘ •—•.,_____-

(0

I— 1~~I I i
L.J

II - 3 2 -

~ oI U I
~~

~~~L r i i
~ I

K .45
~ [

U U U
C) C)

0 C
~~ 

C~~

N

_ _ _ _ _ _ _ _ _  
• L

______ •~~~~~~~
._t

~~~~~ • 
..—

~~~~—— • — - - . - —- - - —- — —

~~ -~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


r
4 7 2 : G A N : 7 l 6 : ~~j tn
78u4 72—608

T E C H N I C A L REPORT DISTR I BUTIO N L1~~~T, (F ~~~

~• o.
Copies Cop ies

Office of Naval Research Defense Documentation Center
800 North Quincy Street Building 5 , Cameron Station
Arli nRton . Virginia 22217 Alexandria , Vi rginia 22314 12
A t m : Code 472 2

U.S. Army Research Office
O~1R l~r~ nch Office P.O. Box 1211
536 S. Clark Street Research Triang le Park) N.C. 27709
Chic ago , Illi nois 60605 Attn : CRD—AA—IP
Attn : Dr. George Sandoz 1

• Naval Ocean Systems Center
ONR Branch Office San Diego , California 92152
715 Broadway Attn: Mr. Joe McCartney
New Yr k , New York l~ OO3

• Attn: Scientific Dept. 1 Naval Weapon s Center
China Lake , California 93555

ONR Bian ch Office Attn: Dr. A. B. Amste r

~O3O I , -’s t Green Street Chemistry Division
Pasad na , California 91106
Attn: Dr. R. 3. Marcus 1 Naval Civil Engineering Laboratory

Port Ilueneme , California 93401
ONR A”ea Office Attn : Dr. R. W. Drisko
One Hil l i d i e Plaza , Suite 601

- San F•’ancisco , California 94102 Professor K. E. Woehier
Attn: Dr. P. A. Miller 1 Department of Physics & Chemistry

Nava l Postgraduate School
ONR B anch Office Monterey) California 93940
Bu 11d~ n? 114 . Section D
666 Sir ~mc~r St reet Dr. A. L. Slafkosky
Bosto~ , ‘~assachusetts 02210 Scientific Advisor
Attn~ Dr. L. H. Peebles 1 Commandant of the Marine Corps

(Code RD—i)
Director , Naval Research Laboratory Washington , D.C. 20380
Washi~igton , D.C. 20390
Attn: Code 6100 1 Office of Naval Research

800 N. Quincy Street
Th e A~sistant Secretary Arlington , Virginia 22217

of :hc’ Navy (R,E&S) Attn : Dr. Richard S. Miller
Departrnc nt of the Navy
Room ~E736 , Pcntag ..rn Nava l Ship Research and Development
Washiig ton , D.C. 20350 1 Center

Annapolis , Maryland 21401
Comna.idcr, Nava l Air Systems Command Attn: Dr. C. Bosmajian
Department of the Navy Applied Chemistry Division
Washington , D.C. 20360
Attn: Code 310C (H. Rosenwasser) 1 Naval Ocean Systems Center

San Die~ro , Calif ornia 91232
ittn : Dr. S. ~~~~~~~~~~~~~ .‘lJti!li?

Sciences L)ivi~ ion

I “‘
~

—-- -- ‘U—’ -. - —

4 ’ / 2 : G A N : 7 1 () : t a~T
78u472— 60 8

•

•
TECHNICAL REPORT DISTR IBUTJC ~~ 1 .1 S T , 05 1C

No. No.
Copies Copies

Dr. M.’B. Dpi~~~n ‘ Dr. K. Wilson
U n i v c r s i~q’of A r i z o n a University of C a l i f o r n i a , San Diego
Departja(nt of Chemistry Department of Chemistry

• Tucson , A rhona 85721 1
-

La Jolla , California

Dr. R. A. Osteryoung Dr. A. Zirino
Colorado State University Naval l’ ri~1er s e i Cecter

• Department of Chemistry San l)~ go , Ca li~ ein ia 92132
Fort Collins , Colorado 80521 1

Dr. Jch n Duffin
Dr. B. R. Kowaiski United States Naval Postgraduate
U n i v e r s i t y of U a s h i n g t o n School
D e p a r t m e n t of C h e m i s t r y M o n t er e y , C a l i f o r n i a 93940
Sea t t le , W a s h i n g t o n ~~ lO 5 1

Dr. C. 1. H i e f t j e
Dr. S. P. Perone - Depar tmen t of Chemis t ry
Purdun University Ind i ana U n i v e r s i t y
D e p a r t m e n t of Chemistry Bloomington , Indiana 47401

• Laf ayette , Indiana 47907 1
Dr. Vi ctor L. Rehn
Naval Weapon s Cen te r
Code 38 13
China Lake , C a l i f o r n i a 93555

• Dr. C h r i s t i e C. Enke
• Dr. D . L. Venezk y M ich igan S t a t e U n i v e r s i t y

Naval Research Laboratory Department of Chemistry
Code 6130 East Lansing, Michigan 48824
Washington , D.C. 20375 1 -

Dr. Kent Eisentraut , MBT
Dr. H. Freis~ r Air Force Materials Laboratory
University of Arizona Wright—Patterson AFB , Ohio 45433
Department of Chemistry
Tuscon , Arizona 85721 Walter C. Cox , Code 3632

Naval Underwater Systems Center
Dr. Fred Saalfeld Bui1din~ 148
Naval Research Laboratory Newport , Rhode Island 0284 0
Code 6110
Washin gton , D.C. 20375 1

Dr. E. Chernoff
Massachusetts Institut e of

Technology -
Departnent of Mathemati cs
.a~-brid ge , Massachusetts 02139 1

- -

-

- • , —

